Eurostat. Statistics | Eurostat. https://ec.europa.eu/eurostat/databrowser/view/aei_fm_salpest09/default/table?lang=en (2022).
Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
Eurostat. The use of plant protection products in the European Union, data 1992–2003. (2007).
Lázaro, E., Makowski, D. & Vicent, A. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Commun. Earth Environ. 2, 224 (2021).
Reilly, T. J., Smalling, K. L., Orlando, J. L. & Kuivila, K. M. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere 89, 228–234 (2012).
Köhler, H.-R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond?. Science 341, 759–765 (2013).
Belsky, J. & Joshi, N. K. Effects of fungicide and herbicide chemical exposure on Apis and Non-Apis Bees in agricultural landscape. Front. Environ. Sci. 8, 81 (2020).
Chirgwin, E. et al. Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts. Pest Manag. Sci. 78, 4709–4718 (2022).
Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C. & Stanley, D. A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE 14, 5743 (2019).
Saifullah, S., Margus, A., Kankare, M. & Lindström, L. Repeated exposure of fluazinam fungicides affects gene expression profiles yet carries no costs on a nontarget pest. Insect Science n/a, (2022).
Tadei, R., Menezes-Oliveira, V. B. & Silva-Zacarin, E. C. M. Silent effect of the fungicide pyraclostrobin on the larval exposure of the non-target organism Africanized Apis mellifera and its interaction with the pathogen Nosema ceranae in adulthood. Environ. Pollut. 267, 115622 (2020).
Elskus, A. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates: U.S. Geol. Surv. (2012).
Zubrod, J. P. et al. Fungicides: An overlooked pesticide class?. Environ. Sci. Technol. 53, 3347–3365 (2019).
Obear, G. R., Adesanya, A. W., Liesch, P. J., Williamson, R. C. & Held, D. W. Fungicides affect Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae) egg hatch, larval survival and detoxification enzymes. Pest Manag. Sci. 72, 966–973 (2016).
Clements, J. et al. Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata, and their susceptibility to insecticides. Sci. Rep. 8, 13282 (2018).
Patterson, M. & Alyokhin, A. Survival and development of Colorado potato beetles on potatoes treated with phosphite. Crop Protect. 61, 38–42 (2014).
Adamski, Z., Krawiec, J. & Markiewicz, E. Effect of dithiocarbamate fungicide mancozeb on development, reproduction and ultrastructure of fat body of agrotis segetum moths. Karaelmas Sci. Eng. J. 7, 7–16 (2011).
Pettis, J. S. et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8, e70182 (2013).
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).
Pélissié, B. et al. Genome resequencing reveals rapid, repeated evolution in the colorado potato beetle. Mol. Biol. Evol. 39, msac016 (2022).
R4P Network. Monitoring systems for resistance to plant protection products across the world: Between redundancy and complementarity. Pest Manag. Sci. 77, 2697–2709 (2021).
Margus, A. et al. Sequence variation and regulatory variation in acetylcholinesterase genes contribute to insecticide resistance in different populations of Leptinotarsa decemlineata. Ecol. Evol. 11, 15995–16005 (2021).
FRAC | Home. https://www.frac.info/.
Zhu, K. Y. & Clark, J. M. Validation of a point mutation of acetylcholinesterase in Colorado potato beetle by polymerase chain reaction coupled to enzyme inhibition assay. Pestic. Biochem. Physiol. 57, 28–35 (1997).
Kim, H. J., Yoon, K. S. & Clark, J. M. Functional analysis of mutations in expressed acetylcholinesterase that result in azinphosmethyl and carbofuran resistance in Colorado potato beetle. Pestic. Biochem. Physiol. 88, 181–190 (2007).
Grapputo, A., Boman, S., Lindström, L., Lyytinen, A. & Mappes, J. The voyage of an invasive species across continents: Genetic diversity of North American and European Colorado potato beetle populations: Genetic diversity of Colorado potato beetles. Mol. Ecol. 14, 4207–4219 (2005).
Clark, J. M., Lee, S. H., Kim, H. J., Yoon, K. S. & Zhang, A. DNA-based genotyping techniques for the detection of point mutations associated with insecticide resistance in Colorado potato beetleLeptinotarsa decemlineata. Pest. Manag. Sci. 57, 968–974 (2001).
Schuhmann, A., Schmid, A. P., Manzer, S., Schulte, J. & Scheiner, R. Interaction of insecticides and fungicides in bees. Front. Insect Sci. 1, 808335 (2022).
Alyokhin, A., Baker, M., Mota-Sanchez, D., Dively, G. & Grafius, E. Colorado potato beetle resistance to insecticides. Am. J. Pot. Res. 85, 395–413 (2008).
Brevik, K., Schoville, S. D., Mota-Sanchez, D. & Chen, Y. H. Pesticide durability and the evolution of resistance: A novel application of survival analysis: Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest. Manag. Sci 74, 1953–1963 (2018).
Sparks, T. C. & Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochem. Physiol. 121, 122–128 (2015).
Kaplanoglu, E. Multi-gene resistance to neonicotinoids in the Colorado potato beetle, Leptinotarsa decemlineata. Electronic Thesis and Dissertation Repository (2017).
Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).
Feyereisen, R. Insect CYP Genes and P450 Enzymes. in Insect Molecular Biology and Biochemistry 236–316 (Elsevier, 2012). https://doi.org/10.1016/B978-0-12-384747-8.10008-X.
Cutler, G. C. et al. Hormesis and insects: Effects and interactions in agroecosystems. Sci. Total Environ. 825, 153899 (2022).
Rix, R. R. & Cutler, G. C. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. Sci. Total Environ. 827, 154085 (2022).
Rainio, M. J., Margus, A., Lehmann, P., Helander, M. & Lindström, L. Effects of a glyphosate-based herbicide on survival and oxidative status of a non-target herbivore, the Colorado potato beetle (Leptinotarsa decemlineata). Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 215, 47–55 (2019).
Piiroinen, S. et al. Pre-invasion history and demography shape the genetic variation in the insecticide resistance-related acetylcholinesterase 2 gene in the invasive Colorado potato beetle. BMC Evol. Biol. 13, 13 (2013).
Lehmann, P. Eco-physiological aspects of adaptation to seasonal environments: the latitudinal range expansion of the Colorado potato beetle across Europe. Jyväskylä Stud. Biol. Environ. Sci. (2013).
Margus, A. Adaptation to stressful environments: invasion success of the Colorado potato beetle (Leptinotarsa decemlineata). JYU Dissertations (2018).
Guenthner, J. F., Wiese, M. V., Pavlista, A. D., Sieczka, J. B. & Wyman, J. Assessment of pesticide use in the U.S. potato industry. Am. J. Potato Res. 76, 25–29 (1999).
Lehmann, P. et al. Photoperiodic effects on diapause-associated gene expression trajectories in European Leptinotarsa decemlineata populations: Prediapause gene expression trajectories. Insect Mol. Biol. 23, 566–578 (2014).